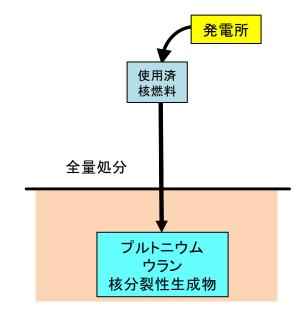
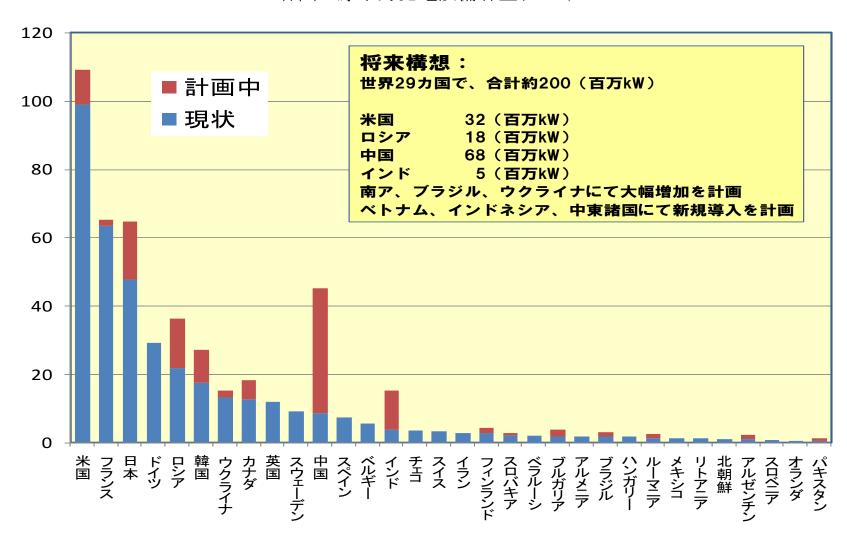

再処理路線

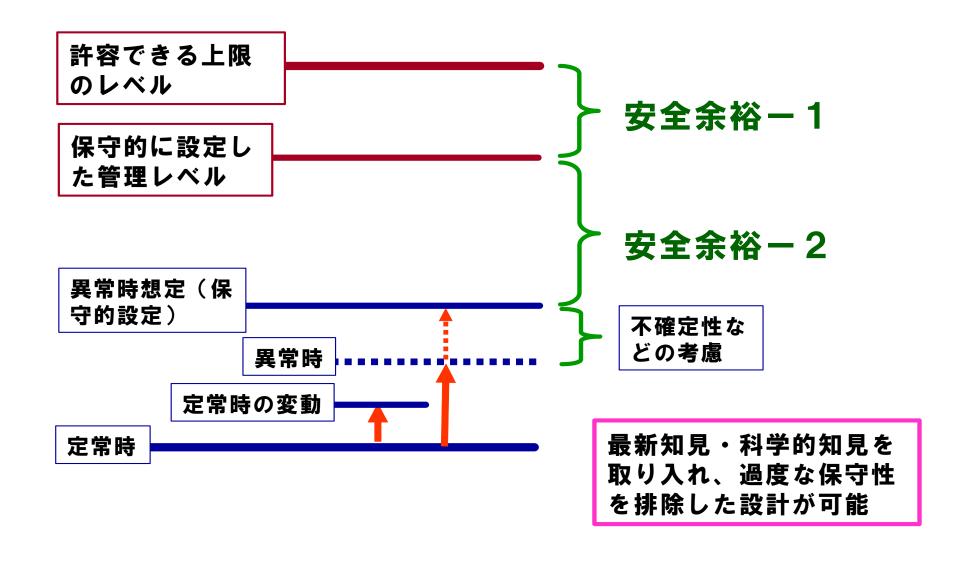

(核燃料サイクル)

- プルトニウムを地層処分せず、燃料として 再利用する(プルサーマル)
- ▶ これにより、放射性廃棄物の減容と、資源 の有効利用を行う

直接処分路線

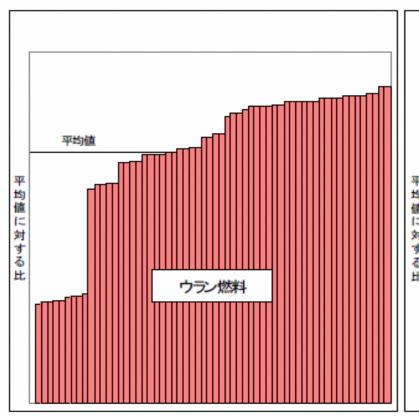
(直接処分サイクル)

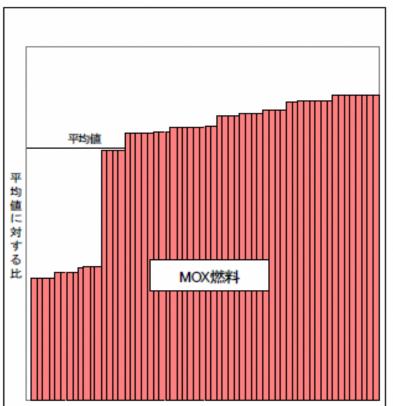



- プルトニウムを含めて、使用済燃料を地層処分
- ▶ 使用済核燃料貯蔵量(中間貯蔵)が大き くなると共に、放射性廃棄物の処分面積 が大きく、毒性が長く続く

地層処分廃棄体の比較

	直接処分路線	再処理リサイクル路線		
廃棄体	使用済燃料	ガラス固化体 (使用済燃料 1 tに相当すると仮定)		
廃棄体長さ	4. 1 (PWR)	1.3 m		
廃棄体重さ	670 kg (PWR)	500 kg		
処分体サイズ	高さ:4.76 m	高さ:1.73 m		
(含オーバパック)	直径:1.24 m	直径:0.82 m		
処分体重さ (含オーバパック)	4体収納:40.9 t (燃料1tHMあたり22.2 t) 2体収納:25.4 t (燃料1tHMあたり27.6 t)	6.1 t (燃料1tHMあたり7.6 t)		
全放射能(Bq/HMt)	1000年時点で: 2160 Bq 10000年時点で: 533 Bq			
	50年時点で: 9440 Bq 1000年時点で: 2110 Bq			
発熱量(W/HMt)		30年時点で: 755 W 50年時点で: 475 W		
処分面積(m2/tU)	軟岩: 173.9 m2/tU 硬岩: (326.1) m2/tU	軟岩: 112.5 m2/tU 硬岩: 58.5 m2/tU		


各国の原子力発電設備容量(GWe)



燃料集合体内の発熱分布(島根2号機の解析例)

燃料集合体内の60本の燃料棒を発熱の低い順に並べて比較

H18年3月県議会への説明資料より

プルトニウム同位体組成の例

		低fissile	中fissile	高fissile
Pu同位体組成例	Pu-239	55%	58%	79%
	Pu-241	9%	10%	2%
Pulpily 本心正/火沙i	他同位体	36%	32%	19%
	核分裂性割合	64%	68%	81%

BWR の MOX 燃料の仕様比較

	原子力安全 委員会指針	浜岡4号機 MOX燃料	島根2号機 MOX燃料	独グンドレミン ゲン-B	独グンドレミン ゲン−C
MOX燃料炉心装荷割 合	1/3以下	1/3以下	1/3以下	実績最大:27% (認可:38%)	最大実績:28% (認可:38%)
ペレット最大プルトニ ウム含有率	13%	10%	10%	1	_
ペレット最大核分裂性 プルトニウム富化度	8%	6%	6%	1	_
集合体平均プルトニウ ム含有率	1	2.9-5.8%	2.9-5.8%	5%強程度と推 測される	5%強程度と推 測される
集合体平均核分裂性 プルトニウム富化度	ı	2.3-3.6%	2.3-3.6%	3.70%	3.70%
燃料集合体最高燃焼 度(MWd/t)	45,000 濃縮ウラン燃 料程度以下	40,000	40,000	-	_
燃料集合体平均燃焼 度(MWd/t)	1	33,000	33,000	55,000	35,000
使用実績		安全審査終了	安全審査中	428集合体 (2005年12月)	280集合体 (2005年12月)